Sains Malaysiana 54(11)(2025): 2685-2696
http://doi.org/10.17576/jsm-2025-5411-09
Menilai Potensi Polisakarida yang Diekstrak
daripada Arthrospira platensis A1 sebagai Sumber Prebiotik kepada Bacillus
velezensis FS26
(Evaluating the Potential of
Polysaccharides Extracted from Arthrospira platensis A1 as a Prebiotic
Source to Bacillus velezensis FS26)
MUHAMAD FIRDAUS SYAHMI SAM-ON1,2,*, SHUHAIMI MUSTAFA3,4,
MOHD TERMIZI YUSOF3, AMALIA MOHD HASHIM3,4 &
SHAHRIZIM ZULKIFLY5
1Department of Food Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Innovation Centre for Confectionery Technology (MANIS),
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
3Department of Microbiology, Faculty of Biotechnology and
Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia
4Halal Products Research Institute, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
5Department of Biology, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Diserahkan: 9 April
2025/Diterima: 8 Oktober 2025
Abstrak
Prebiotik ialah karbohidrat tidak hadam yang digunakan secara selektif oleh
probiotik untuk memberi manfaat kepada kesihatan perumah. Arthrospira
platensis berpotensi sebagai prebiotik kerana kehadiran polisakarida
kompleks dalam strukturnya. Walau bagaimanapun, tiada kajian yang
memfokuskan kepada potensi prebiotik daripada polisakarida sianobakteria ini.
Oleh itu, kajian ini bertujuan untuk menilai polisakarida yang diekstrak
daripada A. platensis A1 dan kesan prebiotiknya terhadap pertumbuhan
probiotik akuakultur B. velezensis FS26. Polisakarida larut air telah diekstrak daripada A. platensis A1
menggunakan kaedah pemanasan
bertekanan tinggi (121 ºC, 15 minit) dan air panas (90
ºC, 3 jam). Polisakarida mentah bagi kedua-dua kaedah
pengekstrakan menunjukkan >85% ketidakcernaan dalam jus gastrik (pH 1-5)
pada pengeraman sehingga enam jam. Puncak utama dalam analisis FTIR telah
dikesan masing-masing pada panjang gelombang 860, 1000-1200 dan 3300-3400 cm-1,
menunjukkan kehadiran ikatan α-glikosidik, cincin piranosa dan getaran
hidroksil. Kehadiran sebatian larut air turut dikesan
menggunakan spektrofotometer UV-Vis pada panjang gelombang 300-400 nm dalam kedua-dua
ekstrak polisakarida. Selain itu, polisakarida daripada A.
platensi boleh digunakan oleh probiotik B. velezensis FS26 berdasarkan
ujian karbohidrat merah fenol yang mana berlaku perubahan warna merah ke
kuning/oren. Di
samping itu, polisakarida yang diekstrak menggunakan pemanasan bertekanan
tinggi menunjukkan pertumbuhan yang ketara untuk B. velezensis FS26
dalam kedua-dua media diperkaya dan minimum masing-masing pada bacaan 0.6 × 109 dan 7.1 × 109 CFU/mL, berbanding ekstrak air panas, inulin atau tiada
karbohidrat. Kesimpulannya, polisakarida mentah daripada A. platensis A1
mempunyai aktiviti prebiotik untuk probiotik B. velezensis FS26 dan
berpotensi sebagai sinbiotik dalam akuakultur.
Kata kunci: Akuakultur; Arthrospira platensis A1; Bacillus
velezensis FS26; polisakarida larut air; prebiotik
Abstract
A prebiotic is a nondigestible carbohydrate which
selectively utilised by probiotic microbes to benefit the hosts’ health. Arthrospira
platensis has the potential to act as a prebiotic due to the presence of
complex polysaccharides in its structure. However, no studies have focused on
the prebiotic potential of polysaccharides from this cyanobacterium. Thus, the
study aims to evaluate the crude polysaccharide extracted from A. platensis A1 and its prebiotic effect on the growth of aquacultural probiotic B.
velezensis FS26. Water-soluble polysaccharides were extracted from A.
platensis A1 using high-pressure heating (121 °C, 15 min) and hot water (90
°C, 3 h). The crude polysaccharide, obtained using both extraction methods,
demonstrated >85% indigestibility in gastric juice after six hours of
incubation. Major peaks in the FTIR analysis were detected at wavelengths of
860, 1000-1200, and 3300-3400 cm-1, indicating the presence of α-glycosidic
bonds, pyranose rings, and hydroxyl vibrations, respectively. Moreover, the UV-Vis
spectrophotometer identified the presence of water-soluble compounds at wavelengths
300-400 nm in both extracted polysaccharides. Additionally, the extracted polysaccharides
that could be utilised by the probiotic B. velezensis FS26, based on the
phenol red carbohydrate test, which showed a colour change from red to yellow/orange.
Besides, the high-pressure heating-extracted crude polysaccharide exhibited
significant growth for B. velezensis FS26 in both enriched and minimal
media at 0.6 × 109 and 7.1 × 109 CFU/mL, respectively, as
compared to media without prebiotics or added polysaccharides. In conclusion,
the extracted polysaccharide from A. platensis A1 possesses prebiotic
activity for probiotic B. velezensis FS26 and holds potential as a
synbiotic in aquaculture.
Keywords: Aquaculture; Arthrospira platensis A1; Bacillus velezensis FS26; prebiotic; water-soluble polysaccharide
RUJUKAN
Amorim, C., Silvério, S.C., Cardoso, B.B., Alves, J.I., Pereira, M.A.
& Rodrigues, L.R. 2020. In vitro fermentation of raffinose to
unravel its potential as prebiotic ingredient. LWT 126: 109322.
Anwar, M., Mros, S., McConnell, M. & Bekhit, A.E.D.A. 2021. Effects
of extraction methods on the digestibility, cytotoxicity, prebiotic potential
and immunomodulatory activity of taro (Colocasia esculenta)
water-soluble non-starch polysaccharide. Food Hydrocolloids 121: 107068.
Azmi, A.F.M.N., Mustafa, S., Hashim, D.M. & Manap, Y.A. 2012.
Prebiotic activity of polysaccharides extracted from Gigantochloa levis (Buluh beting) shoots. Molecules 17(2): 1635-1651.
Beisner, J., Filipe Rosa, L., Kaden-Volynets, V., Stolzer, I., Günther,
C. & Bischoff, S.C. 2021. Prebiotic inulin and sodium butyrate attenuate
obesity-induced intestinal barrier dysfunction by induction of antimicrobial
peptides. Frontiers in Immunology 12: 678360.
Benaoun, F., Delattre, C., Boual, Z., Ursu, A.V., Vial, C., Gardarin, C.,
Wadouachi, A., Le Cerf, D., Varacavoudin, T., El-Hadj, M.D.O., Michaud, P. &
Pierre, G. 2017. Structural characterization and rheological behavior of a
heteroxylan extracted from Plantago notata Lagasca (Plantaginaceae)
seeds. Carbohydrate Polymers 175: 96-104.
Blaiotta, G., La Gatta, B., Di Capua, M., Di Luccia, A., Coppola, R.
& Aponte, M. 2013. Effect of chestnut extract and chestnut fiber on
viability of potential probiotic Lactobacillus strains under gastrointestinal
tract conditions. Food Microbiology 36(2): 161-169.
Borowitzka, M.A. 2018. Biology of microalgae. Dlm. Microalgae in Health
and Disease Prevention, disunting oleh Levine, I.A. & Fleurence, J.
Academic Press. hlm. 23-72.
Casciano, F., Nissen, L. & Gianotti, A. 2021. Effect of formulations
and fermentation processes on volatile organic compounds and prebiotic
potential of gluten-free bread fortified by spirulina (Arthrospira platensis). Food & Function 12(20): 10226-10238.
Chaiklahan, R., Chirasuwan, N., Triratana, P., Tia, S. & Bunnag, B.
2014. Effect of extraction temperature on the diffusion coefficient of
polysaccharides from Spirulina and the optimal separation method. Biotechnology
and Bioprocess Engineering 19: 369-377.
Chen, H., Zeng, J., Wang, B., Cheng, Z., Xu, J., Gao, W. & Chen, K.
2021. Structural characterization and antioxidant activities of Bletilla
striata polysaccharide extracted by different methods. Carbohydrate
Polymers 266: 118149.
Craig, A.D., Khattak, F., Hastie, P., Bedford, M.R. & Olukosi, O.A.
2020. Xylanase and xylo-oligosaccharide prebiotic improve the growth
performance and concentration of potentially prebiotic oligosaccharides in the
ileum of broiler chickens. British Poultry Science 61(1): 70-78.
Daghlas, S.A. & Mohiuddin, S.S. 2019. Biochemistry, Glycogen.
StatPearls Publishing LLC.
de Marco Castro, E., Shannon, E. & Abu-Ghannam, N. 2019. Effect of
fermentation on enhancing the nutraceutical properties of Arthrospira
platensis (Spirulina). Fermentation 5(1): 28.
El-Sheekh, M., El-Shourbagy, I., Shalaby, S. & Hosny, S. 2014. Effect
of feeding Arthrospira platensis (Spirulina) on growth and carcass
composition of hybrid red tilapia (Oreochromis niloticus x Oreochromis
mossambicus). Turkish Journal of Fisheries and Aquatic Sciences 14(2): 471-478.
Fox, J.D. & Robyt, J.F. 1991. Miniaturization of three carbohydrate
analyses using a microsample plate reader. Analytical Biochemistry 195(1): 93-96.
Gibson, G.R., Hutkins, R.W., Sanders, M.E., Prescott, S.L., Reimer, R.A.,
Salminen, S.J., Scott,
K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. & Reid, G. 2017. Expert consensus document: The International Scientific
Association for Probiotics and Prebiotics (ISAPP) consensus statement on the
definition and scope of prebiotics. Nature Reviews Gastroenterology and
Hepatology 14(8): 491-502.
Golmakani, M.T., Soleimanian-Zad, S., Alavi, N., Nazari, E. & Eskandari,
M.H. 2019. Effect of Spirulina (Arthrospira platensis) powder on
probiotic bacteriologically acidified feta-type cheese. Journal of Applied
Phycology 31: 1085-1094.
Hachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H.,
Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P. &
Fendri, I. 2022. Biomolecules from microalgae and cyanobacteria: Applications
and market survey. Applied Sciences 12(4): 1924.
Hajati, H., Zaghari, M. & Oliveira, H.C. 2020. Arthrospira
(Spirulina) platensis can be considered as a probiotic alternative to reduce
heat stress in laying Japanese quails. Brazilian Journal of Poultry Science 22(1): 001-008.
Hu, Y., Shi, S., Lu, L., Teng, C., Yu, S., Wang, X., Yu, M., Liang, J.
& Qu, J. 2017. Effects of selenizing modification on characteristics and
antioxidant activities of Inonotus obliquus polysaccharide. Macromolecular
Research 25: 222-230.
Jahromi, M.F., Liang, J.B., Abdullah, N., Goh, Y.M., Ebrahimi, R. &
Shokryazdan, P. 2016. Extraction and characterization of oligosaccharides from
palm kernel cake as prebiotic. BioResources 11(1): 674-695.
Jain, S., Prajapat, G. & Agrawal, A. 2018. A taxonomical study of
mycosporine-like amino acids producing cyanobacteria. Dlm. Sunscreens, disunting
oleh Rastogi, R.P., Nova Science Publishers Inc. hlm. 131-151.
James, C. & Natalie, S. 2014. Microbiology: A Laboratory Manual. Pearson Education.
Joya, M., Ashayerizadeh, O. & Dastar, B. 2020. Effects of Spirulina (Arthrospira) platensis and Bacillus subtilis PB6 on growth performance,
intestinal microbiota and morphology, and serum parameters in broiler chickens. Animal Production Science 61(4): 390-398.
Li, R., Tang, N., Jia, X., Nirasawa, S., Bian, X., Zhang, P. & Cheng,
Y. 2020. Isolation, physical, structural characterisation and in vitro prebiotic activity of a galactomannan extracted from endosperm splits of
Chinese Sesbania cannabina seeds. International Journal of Biological
Macromolecules 162: 1217-1226.
Liu, C., Liu, H., Zhu, X., Han, D., Jin, J., Yang, Y. & Xie, S. 2022.
The effects of dietary Arthrospira platensis on oxidative stress
response and pigmentation in yellow catfish Pelteobagrus fulvidraco. Antioxidants 11(6): 1100.
Lukova, P., Nikolova, M., Petit, E., Elboutachfaiti, R., Vasileva, T.,
Katsarov, P., Manev,
H., Gardarin, C., Pierre, G., Michaud, P., Iliev, I. & Delattre, C. 2020. Prebiotic activity of poly-and oligosaccharides
obtained from Plantago major L. leaves. Applied Sciences 10(8):
2648.
Markowiak-Kopeć, P. & Śliżewska, K. 2020. The effect
of probiotics on the production of short-chain fatty acids by human intestinal
microbiome. Nutrients 12(4): 1107.
Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination
of reducing sugar. Analytical Chemistry 31(3): 426-428.
Mohd Shafullah, A.S., Sam-On, M.F.S., Mustafa, S., Ramlan, A.N. &
Yusof, M.T. 2025. Evaluation of the potential agricultural biocontrol of
chitin-degrading Paenibacillus alvei FS1 through dual screening
approaches and poison food agar assay. International Microbiology 28: 2161-2174.
Napolitano, G., Venditti, P., Agnisola, C., Quartucci, S., Fasciolo, G.,
Tomajoli, M.T.M., Geremia, E., Catone, C.M. & Ulgiati, S. 2022. Towards
sustainable aquaculture systems: Biological and environmental impact of
replacing fishmeal with Arthrospira platensis (Nordstedt)(Spirulina). Journal
of Cleaner Production 374: 133978.
Niccolai, A., Shannon, E., Abu-Ghannam, N., Biondi, N., Rodolfi, L. &
Tredici, M.R. 2019. Lactic acid fermentation of Arthrospira platensis (Spirulina) biomass for probiotic based products. Journal of Applied
Phycology 31: 1077-1083.
Phélippé, M., Gonçalves, O., Thouand, G., Cogne, G. & Laroche, C.
2019. Characterization of the polysaccharides chemical
diversity of the cyanobacteria Arthrospira platensis. Algal Research 38: 101426.
Richa, Pathak, J., Sonker, A.S., Singh, V. & Sinha, R.P. 2018.
Potential applications of natural bioactive cyanobacterial UV‐protective
compounds. Blue Biotechnology: Production and Use of Marine Molecules 2:
683-707.
Ricigliano, V.A. & Simone-Finstrom, M. 2020. Nutritional and
prebiotic efficacy of the microalga Arthrospira platensis (Spirulina) in
honeybees. Apidologie 51(5): 898-910.
Sam-on, M.F.S., Mustafa, S., Hashim, A.M., Yusof, M.T., Zulkifly, S. &
Roslan, M.A.H. 2023a. Determination of prebiotic utilisation capability of
potential probiotic Bacillus velezensis FS26 through in silico and in vitro approaches. Food Bioscience 53: 102566.
Sam-on, M.F.S., Mustafa, S., Mohd Hashim, A., Yusof, M.T., Zulkifly, S., Abdul
Malek, A.Z., Roslan, M.A.H. & Mohd Asrore, M.S. 2023b. Mining the genome of Bacillus velezensis FS26 for probiotic markers and secondary metabolites
with antimicrobial properties against aquaculture pathogens. Microbial
Pathogenesis 181: 106161.
Sam-on, M.F.S., Mustafa, S., Yusof, M.T., Mohd Hashim, A., Abbasiliasi,
S., Zulkifly, S., Jahari, M.A. & Roslan, M.A.H. 2022. Evaluation of three Bacillus spp. isolated from the gut of giant freshwater prawn as potential probiotics
against pathogens causing Vibriosis and Aeromonosis. Microbial Pathogenesis 164: 105417.
Shen, S., Zhou, C., Zeng, Y., Zhang, H., Hossen, M.A., Dai, J., Li, S.,
Qin, W. & Liu, Y. 2022. Structures, physicochemical and bioactive
properties of polysaccharides extracted from Panax notoginseng using
ultrasonic/microwave-assisted extraction. LWT 154: 112446.
Shi, L. 2016. Bioactivities, isolation and purification methods of
polysaccharides from natural products: A review. International Journal of
Biological Macromolecules 92: 37-48.
Sinha, R.P. & Häder, D.P. 2008. UV-protectants in
cyanobacteria. Plant Science 174(3): 278-289.
Sivalingam, K.M. 2020. Isolation, identification and evaluation of Spirulina
platensis for its effect on seed germination of groundnut (Arachis
hypogaea L.), Wolaita Sodo, Southern Ethiopia. Journal of Algal Biomass
Utilization 11(2): 34-42.
Soule, T., Shipe, D. & Lothamer, J. 2016. Extracellular
polysaccharide production in a scytonemin-deficient mutant of Nostoc
punctiforme under UVA and oxidative stress. Current Microbiology 73(4):
455-462.
Suryawanshi, R.K. & Kango, N. 2021. Production of
mannooligosaccharides from various mannans and evaluation of their prebiotic
potential. Food Chemistry 334: 127428.
Trabelsi, L., M'sakni, N.H., Ben Ouada, H., Bacha, H. & Roudesli, S.
2009. Partial characterization of extracellular polysaccharides produced by
cyanobacterium Arthrospira platensis. Biotechnology and Bioprocess
Engineering 14: 27-31.
Wang, B., Liu, Q., Huang, Y., Yuan, Y., Ma, Q., Du, M., Cai, T. & Cai,
Y. 2018. Extraction of polysaccharide from Spirulina and evaluation of
its activities. Evidence-Based Complementary and Alternative Medicine 2018: 3425615.
Yuan, C., Hu, R., He, L., Hu, J. & Liu, H. 2023. Extraction and
prebiotic potential of β-glucan from highland barley and its application
in probiotic microcapsules. Food Hydrocolloids 139: 108520.
Zainul, R. 2016. Isolation and molecular identification of freshwater
microalgae in Maninjau Lake West Sumatra. Der Pharmacia Lettre 8(20):
177-187.
Zanolla, V., Biondi, N., Niccolai, A., Abiusi, F., Adessi, A., Rodolfi,
L. & Tredici, M.R. 2022. Protein, phycocyanin, and polysaccharide
production by Arthrospira platensis grown with LED light in annular
photobioreactors. Journal of Applied Phycology 34(3): 1189-1199.
Zhou, P., Eid, M., Xiong, W., Ren, C., Ai, T., Deng, Z., Li, J. & Li,
B. 2020. Comparative study between cold and hot water extracted polysaccharides
from Plantago ovata seed husk by using rheological methods. Food
Hydrocolloids 101: 105465.
Zhu, J., Ren, S. & Peng, J. 2012. Optimization of polysaccharide
extraction from Spirulina platensis by cell freeze-thaw cooperated with
hot water extraction and deproteinization. Food Science 33: 111-116.
*Pengarang untuk
surat-menyurat; email: firdaussyahmi97@ukm.edu.my