Sains Malaysiana 54(11)(2025): 2685-2696

http://doi.org/10.17576/jsm-2025-5411-09

 

Menilai Potensi Polisakarida yang Diekstrak daripada Arthrospira platensis A1 sebagai Sumber Prebiotik kepada Bacillus velezensis FS26

(Evaluating the Potential of Polysaccharides Extracted from Arthrospira platensis A1 as a Prebiotic Source to Bacillus velezensis FS26)

 

MUHAMAD FIRDAUS SYAHMI SAM-ON1,2,*, SHUHAIMI MUSTAFA3,4, MOHD TERMIZI YUSOF3, AMALIA MOHD HASHIM3,4 & SHAHRIZIM ZULKIFLY5

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

4Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

5Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Diserahkan: 9 April 2025/Diterima: 8 Oktober 2025

 

Abstrak

Prebiotik ialah karbohidrat tidak hadam yang digunakan secara selektif oleh probiotik untuk memberi manfaat kepada kesihatan perumah. Arthrospira platensis berpotensi sebagai prebiotik kerana kehadiran polisakarida kompleks dalam strukturnya. Walau bagaimanapun, tiada kajian yang memfokuskan kepada potensi prebiotik daripada polisakarida sianobakteria ini. Oleh itu, kajian ini bertujuan untuk menilai polisakarida yang diekstrak daripada A. platensis A1 dan kesan prebiotiknya terhadap pertumbuhan probiotik akuakultur B. velezensis FS26. Polisakarida larut air telah diekstrak daripada A. platensis A1 menggunakan kaedah pemanasan bertekanan tinggi  (121 ºC, 15 minit) dan air panas (90 ºC, 3 jam). Polisakarida mentah bagi kedua-dua kaedah pengekstrakan menunjukkan >85% ketidakcernaan dalam jus gastrik (pH 1-5) pada pengeraman sehingga enam jam. Puncak utama dalam analisis FTIR telah dikesan masing-masing pada panjang gelombang 860, 1000-1200 dan 3300-3400 cm-1, menunjukkan kehadiran ikatan α-glikosidik, cincin piranosa dan getaran hidroksil. Kehadiran sebatian larut air turut dikesan menggunakan spektrofotometer UV-Vis pada panjang gelombang 300-400 nm dalam kedua-dua ekstrak polisakarida. Selain itu, polisakarida daripada A. platensi boleh digunakan oleh probiotik B. velezensis FS26 berdasarkan ujian karbohidrat merah fenol yang mana berlaku perubahan warna merah ke kuning/oren. Di samping itu, polisakarida yang diekstrak menggunakan pemanasan bertekanan tinggi menunjukkan pertumbuhan yang ketara untuk B. velezensis FS26 dalam kedua-dua media diperkaya dan minimum masing-masing pada bacaan 0.6 × 109 dan 7.1 × 109 CFU/mL, berbanding ekstrak air panas, inulin atau tiada karbohidrat. Kesimpulannya, polisakarida mentah daripada A. platensis A1 mempunyai aktiviti prebiotik untuk probiotik B. velezensis FS26 dan berpotensi sebagai sinbiotik dalam akuakultur.

Kata kunci: Akuakultur; Arthrospira platensis A1; Bacillus velezensis FS26; polisakarida larut air; prebiotik

 

Abstract

A prebiotic is a nondigestible carbohydrate which selectively utilised by probiotic microbes to benefit the hosts’ health. Arthrospira platensis has the potential to act as a prebiotic due to the presence of complex polysaccharides in its structure. However, no studies have focused on the prebiotic potential of polysaccharides from this cyanobacterium. Thus, the study aims to evaluate the crude polysaccharide extracted from A. platensis A1 and its prebiotic effect on the growth of aquacultural probiotic B. velezensis FS26. Water-soluble polysaccharides were extracted from A. platensis A1 using high-pressure heating (121 °C, 15 min) and hot water (90 °C, 3 h). The crude polysaccharide, obtained using both extraction methods, demonstrated >85% indigestibility in gastric juice after six hours of incubation. Major peaks in the FTIR analysis were detected at wavelengths of 860, 1000-1200, and 3300-3400 cm-1, indicating the presence of α-glycosidic bonds, pyranose rings, and hydroxyl vibrations, respectively. Moreover, the UV-Vis spectrophotometer identified the presence of water-soluble compounds at wavelengths 300-400 nm in both extracted polysaccharides. Additionally, the extracted polysaccharides that could be utilised by the probiotic B. velezensis FS26, based on the phenol red carbohydrate test, which showed a colour change from red to yellow/orange. Besides, the high-pressure heating-extracted crude polysaccharide exhibited significant growth for B. velezensis FS26 in both enriched and minimal media at 0.6 × 109 and 7.1 × 109 CFU/mL, respectively, as compared to media without prebiotics or added polysaccharides. In conclusion, the extracted polysaccharide from A. platensis A1 possesses prebiotic activity for probiotic B. velezensis FS26 and holds potential as a synbiotic in aquaculture.

Keywords: Aquaculture; Arthrospira platensis A1; Bacillus velezensis FS26; prebiotic; water-soluble polysaccharide

 

RUJUKAN

Amorim, C., Silvério, S.C., Cardoso, B.B., Alves, J.I., Pereira, M.A. & Rodrigues, L.R. 2020. In vitro fermentation of raffinose to unravel its potential as prebiotic ingredient. LWT 126: 109322.

Anwar, M., Mros, S., McConnell, M. & Bekhit, A.E.D.A. 2021. Effects of extraction methods on the digestibility, cytotoxicity, prebiotic potential and immunomodulatory activity of taro (Colocasia esculenta) water-soluble non-starch polysaccharide. Food Hydrocolloids 121: 107068.

Azmi, A.F.M.N., Mustafa, S., Hashim, D.M. & Manap, Y.A. 2012. Prebiotic activity of polysaccharides extracted from Gigantochloa levis (Buluh beting) shoots. Molecules 17(2): 1635-1651.

Beisner, J., Filipe Rosa, L., Kaden-Volynets, V., Stolzer, I., Günther, C. & Bischoff, S.C. 2021. Prebiotic inulin and sodium butyrate attenuate obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides. Frontiers in Immunology 12: 678360.

Benaoun, F., Delattre, C., Boual, Z., Ursu, A.V., Vial, C., Gardarin, C., Wadouachi, A., Le Cerf, D., Varacavoudin, T., El-Hadj, M.D.O., Michaud, P. & Pierre, G. 2017. Structural characterization and rheological behavior of a heteroxylan extracted from Plantago notata Lagasca (Plantaginaceae) seeds. Carbohydrate Polymers 175: 96-104.

Blaiotta, G., La Gatta, B., Di Capua, M., Di Luccia, A., Coppola, R. & Aponte, M. 2013. Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions. Food Microbiology 36(2): 161-169.

Borowitzka, M.A. 2018. Biology of microalgae. Dlm. Microalgae in Health and Disease Prevention, disunting oleh Levine, I.A. & Fleurence, J. Academic Press. hlm. 23-72.

Casciano, F., Nissen, L. & Gianotti, A. 2021. Effect of formulations and fermentation processes on volatile organic compounds and prebiotic potential of gluten-free bread fortified by spirulina (Arthrospira platensis). Food & Function 12(20): 10226-10238.

Chaiklahan, R., Chirasuwan, N., Triratana, P., Tia, S. & Bunnag, B. 2014. Effect of extraction temperature on the diffusion coefficient of polysaccharides from Spirulina and the optimal separation method. Biotechnology and Bioprocess Engineering 19: 369-377.

Chen, H., Zeng, J., Wang, B., Cheng, Z., Xu, J., Gao, W. & Chen, K. 2021. Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydrate Polymers 266: 118149.

Craig, A.D., Khattak, F., Hastie, P., Bedford, M.R. & Olukosi, O.A. 2020. Xylanase and xylo-oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens. British Poultry Science 61(1): 70-78.

Daghlas, S.A. & Mohiuddin, S.S. 2019. Biochemistry, Glycogen. StatPearls Publishing LLC.

de Marco Castro, E., Shannon, E. & Abu-Ghannam, N. 2019. Effect of fermentation on enhancing the nutraceutical properties of Arthrospira platensis (Spirulina). Fermentation 5(1): 28.

El-Sheekh, M., El-Shourbagy, I., Shalaby, S. & Hosny, S. 2014. Effect of feeding Arthrospira platensis (Spirulina) on growth and carcass composition of hybrid red tilapia (Oreochromis niloticus x Oreochromis mossambicus). Turkish Journal of Fisheries and Aquatic Sciences 14(2): 471-478.

Fox, J.D. & Robyt, J.F. 1991. Miniaturization of three carbohydrate analyses using a microsample plate reader. Analytical Biochemistry 195(1): 93-96.

Gibson, G.R., Hutkins, R.W., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. & Reid, G. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology 14(8): 491-502.

Golmakani, M.T., Soleimanian-Zad, S., Alavi, N., Nazari, E. & Eskandari, M.H. 2019. Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese. Journal of Applied Phycology 31: 1085-1094.

Hachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P. & Fendri, I. 2022. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Applied Sciences 12(4): 1924.

Hajati, H., Zaghari, M. & Oliveira, H.C. 2020. Arthrospira (Spirulina) platensis can be considered as a probiotic alternative to reduce heat stress in laying Japanese quails. Brazilian Journal of Poultry Science 22(1): 001-008.

Hu, Y., Shi, S., Lu, L., Teng, C., Yu, S., Wang, X., Yu, M., Liang, J. & Qu, J. 2017. Effects of selenizing modification on characteristics and antioxidant activities of Inonotus obliquus polysaccharide. Macromolecular Research 25: 222-230.

Jahromi, M.F., Liang, J.B., Abdullah, N., Goh, Y.M., Ebrahimi, R. & Shokryazdan, P. 2016. Extraction and characterization of oligosaccharides from palm kernel cake as prebiotic. BioResources 11(1): 674-695.

Jain, S., Prajapat, G. & Agrawal, A. 2018. A taxonomical study of mycosporine-like amino acids producing cyanobacteria. Dlm. Sunscreens, disunting oleh Rastogi, R.P., Nova Science Publishers Inc. hlm. 131-151.

James, C. & Natalie, S. 2014. Microbiology: A Laboratory Manual. Pearson Education.

Joya, M., Ashayerizadeh, O. & Dastar, B. 2020. Effects of Spirulina (Arthrospira) platensis and Bacillus subtilis PB6 on growth performance, intestinal microbiota and morphology, and serum parameters in broiler chickens. Animal Production Science 61(4): 390-398.

Li, R., Tang, N., Jia, X., Nirasawa, S., Bian, X., Zhang, P. & Cheng, Y. 2020. Isolation, physical, structural characterisation and in vitro prebiotic activity of a galactomannan extracted from endosperm splits of Chinese Sesbania cannabina seeds. International Journal of Biological Macromolecules 162: 1217-1226.

Liu, C., Liu, H., Zhu, X., Han, D., Jin, J., Yang, Y. & Xie, S. 2022. The effects of dietary Arthrospira platensis on oxidative stress response and pigmentation in yellow catfish Pelteobagrus fulvidraco. Antioxidants 11(6): 1100.

Lukova, P., Nikolova, M., Petit, E., Elboutachfaiti, R., Vasileva, T., Katsarov, P., Manev, H., Gardarin, C., Pierre, G., Michaud, P., Iliev, I. & Delattre, C. 2020. Prebiotic activity of poly-and oligosaccharides obtained from Plantago major L. leaves. Applied Sciences 10(8): 2648.

Markowiak-Kopeć, P. & Śliżewska, K. 2020. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12(4): 1107.

Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426-428.

Mohd Shafullah, A.S., Sam-On, M.F.S., Mustafa, S., Ramlan, A.N. & Yusof, M.T. 2025. Evaluation of the potential agricultural biocontrol of chitin-degrading Paenibacillus alvei FS1 through dual screening approaches and poison food agar assay. International Microbiology 28: 2161-2174.

Napolitano, G., Venditti, P., Agnisola, C., Quartucci, S., Fasciolo, G., Tomajoli, M.T.M., Geremia, E., Catone, C.M. & Ulgiati, S. 2022. Towards sustainable aquaculture systems: Biological and environmental impact of replacing fishmeal with Arthrospira platensis (Nordstedt)(Spirulina). Journal of Cleaner Production 374: 133978.

Niccolai, A., Shannon, E., Abu-Ghannam, N., Biondi, N., Rodolfi, L. & Tredici, M.R. 2019. Lactic acid fermentation of Arthrospira platensis (Spirulina) biomass for probiotic based products. Journal of Applied Phycology 31: 1077-1083.

Phélippé, M., Gonçalves, O., Thouand, G., Cogne, G. & Laroche, C. 2019. Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. Algal Research 38: 101426.

Richa, Pathak, J., Sonker, A.S., Singh, V. & Sinha, R.P. 2018. Potential applications of natural bioactive cyanobacterial UV‐protective compounds. Blue Biotechnology: Production and Use of Marine Molecules 2: 683-707.

Ricigliano, V.A. & Simone-Finstrom, M. 2020. Nutritional and prebiotic efficacy of the microalga Arthrospira platensis (Spirulina) in honeybees. Apidologie 51(5): 898-910.

Sam-on, M.F.S., Mustafa, S., Hashim, A.M., Yusof, M.T., Zulkifly, S. & Roslan, M.A.H. 2023a. Determination of prebiotic utilisation capability of potential probiotic Bacillus velezensis FS26 through in silico and in vitro approaches. Food Bioscience 53: 102566.

Sam-on, M.F.S., Mustafa, S., Mohd Hashim, A., Yusof, M.T., Zulkifly, S., Abdul Malek, A.Z., Roslan, M.A.H. & Mohd Asrore, M.S. 2023b. Mining the genome of Bacillus velezensis FS26 for probiotic markers and secondary metabolites with antimicrobial properties against aquaculture pathogens. Microbial Pathogenesis 181: 106161.

Sam-on, M.F.S., Mustafa, S., Yusof, M.T., Mohd Hashim, A., Abbasiliasi, S., Zulkifly, S., Jahari, M.A. & Roslan, M.A.H. 2022. Evaluation of three Bacillus spp. isolated from the gut of giant freshwater prawn as potential probiotics against pathogens causing Vibriosis and Aeromonosis. Microbial Pathogenesis 164: 105417.

Shen, S., Zhou, C., Zeng, Y., Zhang, H., Hossen, M.A., Dai, J., Li, S., Qin, W. & Liu, Y. 2022. Structures, physicochemical and bioactive properties of polysaccharides extracted from Panax notoginseng using ultrasonic/microwave-assisted extraction. LWT 154: 112446.

Shi, L. 2016. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. International Journal of Biological Macromolecules 92: 37-48.

Sinha, R.P. & Häder, D.P. 2008. UV-protectants in cyanobacteria. Plant Science 174(3): 278-289.

Sivalingam, K.M. 2020. Isolation, identification and evaluation of Spirulina platensis for its effect on seed germination of groundnut (Arachis hypogaea L.), Wolaita Sodo, Southern Ethiopia. Journal of Algal Biomass Utilization 11(2): 34-42.

Soule, T., Shipe, D. & Lothamer, J. 2016. Extracellular polysaccharide production in a scytonemin-deficient mutant of Nostoc punctiforme under UVA and oxidative stress. Current Microbiology 73(4): 455-462.

Suryawanshi, R.K. & Kango, N. 2021. Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential. Food Chemistry 334: 127428.

Trabelsi, L., M'sakni, N.H., Ben Ouada, H., Bacha, H. & Roudesli, S. 2009. Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnology and Bioprocess Engineering 14: 27-31.

Wang, B., Liu, Q., Huang, Y., Yuan, Y., Ma, Q., Du, M., Cai, T. & Cai, Y. 2018. Extraction of polysaccharide from Spirulina and evaluation of its activities. Evidence-Based Complementary and Alternative Medicine 2018: 3425615.

Yuan, C., Hu, R., He, L., Hu, J. & Liu, H. 2023. Extraction and prebiotic potential of β-glucan from highland barley and its application in probiotic microcapsules. Food Hydrocolloids 139: 108520.

Zainul, R. 2016. Isolation and molecular identification of freshwater microalgae in Maninjau Lake West Sumatra. Der Pharmacia Lettre 8(20): 177-187.

Zanolla, V., Biondi, N., Niccolai, A., Abiusi, F., Adessi, A., Rodolfi, L. & Tredici, M.R. 2022. Protein, phycocyanin, and polysaccharide production by Arthrospira platensis grown with LED light in annular photobioreactors. Journal of Applied Phycology 34(3): 1189-1199.

Zhou, P., Eid, M., Xiong, W., Ren, C., Ai, T., Deng, Z., Li, J. & Li, B. 2020. Comparative study between cold and hot water extracted polysaccharides from Plantago ovata seed husk by using rheological methods. Food Hydrocolloids 101: 105465.

Zhu, J., Ren, S. & Peng, J. 2012. Optimization of polysaccharide extraction from Spirulina platensis by cell freeze-thaw cooperated with hot water extraction and deproteinization. Food Science 33: 111-116.

 

*Pengarang untuk surat-menyurat; email: firdaussyahmi97@ukm.edu.my

 

 

 

 

 

 

 

           

sebelumnya